Experimental DIY Anaerobic Digester
9 KW Solar PV
Hybrid solar aquaponic greenhouse
Compost Heat Recovery System

[Diagram and text about the compost heat recovery system]

[Image of people working on a compost pile with tools and hay]

[Image of a sign explaining the compost heat recovery system]
COMPOST HEAT PILE

Compost piles are made up of "organic matter": kitchen scraps, woody biomass, dead plant matter, and so on. Bacteria produce heat within compost piles during decomposition.

Jean Pain established and implemented a practical of capturing heat from compost piles in Southern France during the 1960's. Mod B11's pile is based on his work and is an example of his methods.

Our eight tall pile is a straw insulated dome of woody biomass compost which is rested on a bed of cedar chips and a gravel foundation. A 60/40 ratio of fir shavings, aspen shavings, and horse manure is the sum of the woody biomass.

An internal system of closed tubes circulates water through the body of the pile. This water conducts the heat produced by the bacteria like blood conducts heat throughout the human body. The heated water is stored in a 120 gallon tank which will feed the ex-flour radiant heat system installed in Mod B11.

The pile maintains an average temperature of 130 degrees Fahrenheit over a 12 month period ranging from 130°-150° in the first four months and 110°-130° during the remaining eight.

Compost piles provide energy at a low cost and create nutrient rich soil as a byproduct. This is a low environmental impact method, especially when compared to contemporary fossil fuel practices.
Aquaponic Greenhouse
Comparative Solar Thermal Systems
Campus Events

Evergreen's Annual Sustainable Living Conference
Synergy
Ecology • Equity • Economy

Creative Community Festival
Saturday May 22nd 2010
Red Square 11a - 4p

Come visit Local Businesses and Nonprofits
Performance and Lecture by Dana Lyons

Keynote Speakers: Angela Davis and Antwi Akom

MAY 17-22 FEATURING

- Earth Systems and Natural Points: A Workshop by Joseph Becker
- The Future of Biomass in Washington State: A Lecture by Peter Mahoney
- Cook With Your Boots on: A Course on Sustainable Food Systems for Washington
- Wild Edibles: Lecture and Workshop by John Gullin
- Alternative Transportation Day in Red Square
- Youth Leading the Sustainability Movement: A Lecture by Dana Lyons

For more information please visit our website: www.evergreen.edu/synergy
or find us on Facebook
By 2100:

- Highest temps in 30 million years
- Sea-level rise of 3-6 feet
- Drought over 40% of inhabitable
- Hundreds of millions of refugees
- Half of all known species extinct

Prof. Kim Anderson: "A 4°C world is incomparable with an organized global civilization."

Day everything changed

Jess Pettitt
@jesspettit
Living in the Anthropocene

Monday April 21, 2014 3:30–5:30pm
Free Registration; Doors Open at 3pm
Recital Hall, Communications Building
Reception to follow
http://blogs.evergreen.edu/tedx
Bike Repair Stations in Housing
Energy from Pedal Power
On-campus Bike Share Program
Electric Vehicles
Bus Passes
CEC's Student Project Activity Report

The Student Project Activity Report (a.k.a. the SPAR) allows the Clean Energy Committee to check in with current projects. This short report lets us know how to better support your project and projects in the future. It is due Friday at 5pm every Week 3 and 7 each quarter, excluding summers, that your project is active. Failure to complete the SPAR may result in probation. Thank you for completing this form on time.

Project Title

Project Lead's Name

Name of Person Completing SPAR

Your Email

Briefly describe the goals/intended timeline of this project during the last period.

Have those goal/deadlines been met? In what ways were they not met?